1. Seif, M. S., Sadeghi, A. A., & Mohammadi, M. (2023). Application of artificial intelligence in predicting the failure of marine equipment. International Journal of Maritime Technology, 18(2), 125-134.
2. Ahmadi, A. R., Alizad, H., & Rezaei, M. B. (2022). Reliability assessment of marine propulsion systems using simulation methods. International Journal of Maritime Technology, 17(4), 281-290.
3. Mohammadi, S., Hosseini, A. H., & Jafari, A. A. (2021). A novel model for preventive maintenance of marine equipment. International Journal of Maritime Technology, 16(3), 197-206.
4. Rezaei, M., Sadeghi, M. H., & Ahmadi, S. (2020). Application of artificial intelligence in ship maintenance. International Journal of Maritime Technology, 15(2), 113-122.
5. Mohammadi, A., Ahmadi, A., & Hosseini, H. (2019). The impact of artificial intelligence on the maritime industry. International Journal of Maritime Technology, 14(4), 271-280.
6. Rezaei, M., Sadeghi, M. H., & Ahmadi, S. (2022). An AI-based system for condition monitoring of marine equipment. International Journal of Maritime Technology, 17(3), 207-216.
7. Jin, X., Wang, P., & Tsui, K. L. (2016). An adaptive prognostic model for rolling element bearings based on particle filter and extended Kalman filter. IEEE Transactions on Industrial Electronics, 63(10), 6148-6157.
8. Huang, H. Z., Xi, L., Li, C., & Liu, C. (2017). Remaining useful life prediction for machinery based on adaptive skew-Wiener process and health state similarity. Mechanical Systems and Signal Processing, 85, 770-787.
9. Yang, J., Zhang, Y., & Wang, P. (2019). Deep convolutional neural network-based remaining useful life prediction of bearings under different working conditions. IEEE Transactions on Industrial Electronics, 67(2), 1262-1272.
10. Deutsch, J., & He, D. (2018). A deep learning approach for remaining useful life prediction based on machine condition data. Journal of Manufacturing Science and Engineering, 140
11. Mao, W., He, J., & Zuo, M. J. (2020). A novel deep learning approach for remaining useful life prediction of bearings based on health state similarity. IEEE Transactions on Industrial Electronics, 67(11), 9714-9724.
12. Wang, Y., Ma, X., & Li, Y. F. (2018). A quantum-weighted gated recurrent unit network for remaining useful life prediction of bearings. IEEE Transactions on Industrial Informatics, 15(4), 2410-242