1. Ahmadi, F., Rahbar-Ranji, A., & Nowruzi, H. (2023). Estimation of ultimate shear strength of one-side corroded plates with cracks by FEM and ANNs. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(6), 1-13.
https://doi.org/10.1007/s40430-023-04300-z [
DOI:10.1007/s40430-023-04123-5]
2. Barrios, J., Méndez, G., & Cavazos, A. (2020). Hybrid-learning type-2 takagi-sugeno-kang fuzzy systems for temperature estimation in hot-rolling. Metals, 10(6), 758. [
DOI:10.3390/met10060758]
3. Braunbehrens, R., Strecker, K., Anand, A., Felder, M., Petzschmann, J., & Bottasso, C. (2024). Site-specific production forecast through data-driven and engineering models. Journal of Physics Conference Series, 2767(9), 092054. [
DOI:10.1088/1742-6596/2767/9/092054]
4. Charlou, M., Babarit, A., & Gentaz, L. (2023). A new validated open-source numerical tool for the evaluation of the performance of wind-assisted ship propulsion systems. Mechanics & Industry, 24, 26. [
DOI:10.1051/meca/2023026]
5. Connolly, D., Costa, P., Kouroussis, G., Galvín, P., Woodward, P., & Laghrouche, O. (2015). Large scale international testing of railway ground vibrations across Europe. Soil Dynamics and Earthquake Engineering, 71, 1-12. [
DOI:10.1016/j.soildyn.2015.01.001]
6. Daniel, J., Schuster, M., Andresen-Paulsen, G., Holz, F., Wittekind, K., & Ehlers, S. (2022). An advanced prediction model for underwater noise emissions of ships. Journal of Ship Production and Design, 38(04), 220-238.
https://doi.org/10.5957/JSPD.06210017 [
DOI:10.5957/jspd.06210017]
7. Ding, J., Chen, Z., & Du, Y. (2021). Probability box theory-based uncertain power flow calculation for power system with wind power. International Journal of Emerging Electric Power Systems, 22(2), 243-253. [
DOI:10.1515/ijeeps-2020-0227]
8. Dong, L., Zhang, H., Yu, J., & Hu, G. (2023). Energy harvesting potential assessment and systematic design for energy-regenerative shock absorbers on railway freight wagons. Journal of Intelligent Material Systems and Structures, 35(3), 270-290.
https://doi.org/10.1177/1045389X231200146 [
DOI:10.1177/1045389x231200146]
9. Fu, C., Xu, Y., Yang, Y., Lu, K., Gu, F., & Ball, A. (2020). Response analysis of an accelerating unbalanced rotating system with both random and interval variables. Journal of Sound and Vibration, 466, 115047. [
DOI:10.1016/j.jsv.2019.115047]
10. Gao, M. and Liu, W. (2022). Study on a base-galloping hybrid excitation piezoelectric vibration energy harvester. Journal of Physics Conference Series, 2383(1), 012003. [
DOI:10.1088/1742-6596/2383/1/012003]
11. García-Miguel, P., Zarilli, D., Alonso-Martínez, J., Plaza, M., & Arnaltes, S. (2024). Optimal operation and market integration of a hybrid farm with green hydrogen and energy storage: a stochastic approach considering wind and electricity price uncertainties. Sustainability, 16(7), 2856. [
DOI:10.3390/su16072856]
12. Hammad, K., Al-Turki, A., Sudirman, S., & Sawlan, Z. (2024). Enhancing reservoir model history matching with ai surrogate and ensemble iterative algorithms..
https://doi.org/10.2118/221028-MS [
DOI:10.2118/221028-ms]
13. Hu, Y., Qiao, Y., Chu, J., Yuan, L., & Pan, L. (2019). Joint point-interval prediction and optimization of wind power considering the sequential uncertainties of stepwise procedure. Energies, 12(11), 2205. [
DOI:10.3390/en12112205]
14. Lan, T., Hwang, H., Chen, J., & Long, Y. (2023). Improvement in vibration of hybrid powertrain with combined control methods. Sensors and Materials, 35(6), 1871.
https://doi.org/10.18494/SAM4318 [
DOI:10.18494/sam4318]
15. Li, Z., Wang, S., Li, F., Li, L., Liu, L., & Zou, H. (2022). Influence of 3d modification on dynamic characteristics of herringbone gearbox system and vibration reduction design. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-Body Dynamics, 236(4), 602-622. [
DOI:10.1177/14644193221107483]
16. Lin, Y., Zhang, H., Liu, J., Ju, W., Wang, J., & Chen, X. (2021). Research on short-term wind power prediction of gru based on similar days. Journal of Physics Conference Series, 2087(1), 012089. [
DOI:10.1088/1742-6596/2087/1/012089]
17. Liu, L., Zhou, W., Guan, K., Peng, B., Xu, S., Tang, J., … & Jin, Z. (2024). Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nature Communications, 15(1). [
DOI:10.1038/s41467-023-43860-5] [
PMID] [
]
18. Ma, X., Huang, S., Song, Y., & Zhang, Z. (2023). Uncertainty quantification and probabilistic reliability analysis for the self-excited vibration of a spline-shafting system. Inter-Noise and Noise-Con Congress and Conference Proceedings, 268(3), 5294-5301.
https://doi.org/10.3397/IN_2023_0746 [
DOI:10.3397/in_2023_0746]
19. Marino, L. and Cicirello, A. (2023). A switching gaussian process latent force model for the identification of mechanical systems with a discontinuous nonlinearity. Data-Centric Engineering, 4. [
DOI:10.1017/dce.2023.12]
20. Mezouary, L., Hadri, A., Kharrou, M., Fakır, Y., Elfarchouni, A., Bouchaou, L., … & Chehbouni, A. (2024). Contribution to advancing aquifer geometric mapping using machine learning and deep learning techniques: a case study of the al haouz-mejjate aquifer, marrakech, morocco. Applied Water Science, 14(5). [
DOI:10.1007/s13201-024-02162-x]
21. Miao, K., Yong, H., Zhang, L., Guo, L., & Hermans, T. (2025). Quantifying groundwater contaminant source uncertainty in fracture networks combining falsification and bayesian evidential learning.. [
DOI:10.5194/egusphere-egu25-11456]
22. Mukangango, J., Muyskens, A., & Priest, B. (2024). A robust approach to gaussian process implementation. Advances in Statistical Climatology Meteorology and Oceanography, 10(2), 143-158. [
DOI:10.5194/ascmo-10-143-2024]
23. Mylonas, C., Abdallah, I., & Chatzi, E. (2019). Deep unsupervised learning for condition monitoring and prediction of high dimensional data with application on windfarm scada data., 189-196. [
DOI:10.1007/978-3-030-12075-7_21]
24. Nowruzi, H., Shora, M. M., & Ghassemi, H. (2017). Using computational fluid dynamic and artificial neural networks to predict the performance and cavitation volume of a propeller under different geometrical and physical conditions. Ocean Engineering, 136, 76-86. [
DOI:10.1016/j.oceaneng.2017.03.002]
25. Sankararaman, S., & Mahadevan, S. (2014). Uncertainty Quantification in Structural Health Monitoring. In Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. [
DOI:10.1007/978-3-642-36197-5_281-1]
26. Sengupta, M., Zhang, H., Zhao, Y., Jervis, M., & Graña, D. (2021). Direct depth-domain bayesian amplitude-variation-with-offset inversion. Geophysics, 86(5), M167-M176. [
DOI:10.1190/geo2020-0219.1]
27. Taghva, H. R., Ghassemi, H., & Nowruzi, H. (2018). Seakeeping performance estimation of the container ship under irregular wave condition using artificial neural network. American Journal of Civil Engineering and Architecture, 6(4), 123-129. [
DOI:10.12691/ajcea-6-4-3]
28. Venturini, M., Alvisi, S., Simani, S., & Manservigi, L. (2018). Comparison of different approaches to predict the performance of pumps as turbines (pats). Energies, 11(4), 1016. [
DOI:10.3390/en11041016]
29. Wang, Z., Sumbal, S., & Toumazou, C. (2025). A hybrid ode-neural network framework for modeling and guiding glp-1-mediated glucose dynamics.. [
DOI:10.21203/rs.3.rs-5912837/v1]
30. Zhang, X., Li, X., Zhang, J., Song, L., & Li, Y. (2015). A hybrid model for the prediction of low-frequency noise emanating from a concrete box-girder railway bridge. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 230(4), 1242-1256. [
DOI:10.1177/0954409715605127]
31. Zhang, Y., Sun, H., & Guo, Y. (2019). Wind power prediction based on pso-svr and grey combination model. Ieee Access, 7, 136254-136267.
https://doi.org/10.1109/ACCESS.2019.2942012 [
DOI:10.1109/access.2019.2942012]
32. Zhou, W., Liu, L., Guan, K., Jin, Z., Peng, B., & Wang, S. (2025). Scalable quantification of agroecosystem carbon budget and crop yield based on knowledge-guided machine learning.. [
DOI:10.5194/egusphere-egu25-7574]
33. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. [
DOI:10.1023/A:1010933404324]
34. Wang, J., & Liu, Y. (2019). A hybrid ensemble approach for structural health monitoring using machine learning. Structural Control and Health Monitoring, 26(4), e2345. [
DOI:10.1002/stc.2345]
35. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. Wiley. [
DOI:10.1002/9781118548387]
36. Kim, D., Park, S., & Lee, J. (2018). Integrating tree-based ensembles with linear models for prediction: A case study in mechanical vibrations. Mechanical Systems and Signal Processing, 102, 120-137. [
DOI:10.1016/j.ymssp.2017.07.021]