Write your message


XML Print


1- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology
2- PhD student in Water Resources Engineering and Management, Faculty of Civil Engineering,Shahrood University of Technology
Abstract:   (16 Views)
Qeshm Island’s extreme aridity and rapid growth expose a mismatch between headline per-capita renewable water figures and actual aquifer stress. Using multi-decadal precipitation, census, and well records, we estimate renewable supply, recharge, storage, and salinity. Natural replenishment is minimal: about 60% of rainfall is lost to evaporation and most of the remainder leaves as runoff, yielding little effective recharge. Under trend-based demographic projections, renewable water per capita declines to 757 m3 per person per year by 2036 (medium evaporation-loss scenario). Groundwater observations show a long-term water-table decline near 0.091 m per year and salinity rising to about 14 to 16.6 dS/m, consistent with persistent overdraft and seawater intrusion or up-coning. To translate hydrologic limits into development choices, we evaluate a conservative 40% withdrawal of renewable yield with a mixed allocation 70% agriculture, 20% industry, 10% domestic. At this intensity the budget can irrigate about 1,523 ha of date palms, support roughly 335,000 t/yr of petrochemical output, and supply about 23,841 residents, generating approximately $16.45 million (agriculture), $334.69 million (industry), and $0.22 million (domestic) per year around $351 million in total. These results show that per-capita indicators alone can overstate security; resilient coastal-marine development on Qeshm will require aligning withdrawals with limited renewability and storage, coupled with managed aquifer recharge, targeted desalination, and selective use of saline groundwater to protect potable supplies and industrial applications requiring low-salinity makeup water (e.g., boiler and cooling systems), where acceptable conductivity is typically 0.2–2 dS m⁻¹ with low hardness and silica.
Full-Text [PDF 934 kb]   (5 Downloads)    

Highlights
1- Comprehensive island-scale water-budget shows that population growth not rainfall variabilityis the primary driver of scarcity on Qeshm.
2- Trend scenarios project a sustained decline in per-capita renewable water, pushing the island toward severe stress within two decades without intervention.
3- A ≤40% extraction cap on renewable flows enables viable mixed allocations (municipal–agriculture–industry) while remaining within sustainable limits.
4- Long-term monitoring documents simultaneous groundwater-level decline and rising EC, evidencing coupled quantity–quality stress and heightened seawater-intrusion risk.
5- A practical management toolbox demand restraint and loss control, managed aquifer recharge, fit-for-purpose reuse, and desalination as a quantitative backstop with transparent energy/brine accountingsupports resilient, cost-effective island water security.
 
Type of Study: Research Paper | Subject: Other
Received: 2025/08/22 | Accepted: 2025/11/15

References
1. Jackson, R.B., et al., Water in a changing world. Ecological Applications, 2001. 11: p. 1027-1045. [DOI:10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2]
2. Young, M.E., Water resources challenges in the Arab world, in Water Encyclopedia, J.H. Lehr and J. Keeley, Editors. 2004, Wiley. p. 470-474. [DOI:10.1002/047147844X.wr226]
3. Khiyat, Z., Groundwater in the Arab region: Making the invisible visible. Desalination and Water Treatment, 2022. 263: p. 204-206. [DOI:10.5004/dwt.2022.28231]
4. Han, J., The analysis and prediction of water supply and demand for Beijing in future, in Proceedings of ICEMCT 2016. 2016. [DOI:10.2991/icemct-16.2016.229]
5. Alam, S., et al., Can managed aquifer recharge mitigate the groundwater overdraft in California's Central Valley? Water Resources Research, 2020. 56: p. e2020WR027244. [DOI:10.1029/2020WR027244]
6. Ray, P.A., et al., An overview of the water situation in Amman, Jordan, in World Environmental and Water Resources Congress 2010. 2010, American Society of Civil Engineers. p. 1980-1989. [DOI:10.1061/41114(371)207]
7. Magar, S.S., Best practices and technologies for agricultural water management. 2006.
8. Kheirinejad, S., et al., The effect of reducing per capita water and energy uses on renewable water resources in the water-food-energy nexus. Scientific Reports, 2022. 12: p. 7582. [DOI:10.1038/s41598-022-11595-w] [PMID] []
9. Tyabo, A.M., et al., Potential impacts of climate change and population growth on water resources in Guinea Savanna ecological zone of Nigeria. The International Journal of Science & Technoledge, 2021. 9: p. 14-22. [DOI:10.24940/theijst/2021/v9/i8/ST2108-002]
10. Duarte, R., V. Pinilla, and A. Serrano, Revisiting water and economic growth from a long-term perspective, in Water resources and economic processes. 2020, Routledge. [DOI:10.4324/9780429025013-3]
11. Zhu, X., M. Hou, and J. Wei, Global water use and its changing patterns: Insights from OECD countries. Water, 2024. 16: p. 3592. [DOI:10.3390/w16243592]
12. Lee, J., et al., The impact of pricing structure change on residential water consumption: A long-term analysis of water utilities in California. Water Resources Economics, 2024. 46: p. 100240. [DOI:10.1016/j.wre.2024.100240]
13. Bolorinos, J., R. Rajagopal, and N.K. Ajami, Mining the gap in long-term residential water and electricity conservation. Environmental Research Letters, 2021. 16: p. 024007. [DOI:10.1088/1748-9326/abbfc2]
14. Gober, P., The demography of water use: Why the past is a poor predictor of the future, in Population, place, and spatial interaction: Essays in honor of David Plane, R.S. Franklin, Editor. 2019, Springer. p. 249-260. [DOI:10.1007/978-981-13-9231-3_13]
15. Farrah, N. and K. Walraevens, Implication of salinity sources, geochemical evaluation and upper aquifer characterisation of Jifarah Plain, NW-Libya, in Proceedings of SWIM 2010. 2010.
16. Borrok, D. and W. Broussard, Long-term geochemical evaluation of the coastal Chicot Aquifer System, Louisiana, USA. Journal of Hydrology, 2016. 533: p. 320-331. [DOI:10.1016/j.jhydrol.2015.12.022]
17. Cruz-Fuentes, T., et al., Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. Science of the Total Environment, 2014. 484: p. 154-166. [DOI:10.1016/j.scitotenv.2014.03.041] [PMID]
18. Duque, C., et al., Paleohydrogeological model of the groundwater salinity in the Motril-Salobreña aquifer, in Advances in groundwater governance. 2018, CRC Press. p. 117-126. [DOI:10.1007/978-3-319-69356-9_14]
19. Guo, Z., et al., Sustainability of regional groundwater quality in response to managed aquifer recharge. Water Resources Research, 2022. 59: p. e2021WR031459. [DOI:10.1029/2021WR031459]
20. Miller, K., A. Fisher, and M. Kiparsky, Incentivizing groundwater recharge in the Pajaro Valley through Recharge Net Metering (ReNeM). Case Studies in the Environment, 2021. [DOI:10.1525/cse.2021.1222393]
21. Maskey, M., et al., Managing aquifer recharge to overcome overdraft in the Lower American River, California, USA. Water, 2022. 14(6): p. 966. [DOI:10.3390/w14060966]
22. Martínez-Granados, D. and J. Calatrava, The role of desalinisation to address aquifer overdraft in SE Spain. Journal of Environmental Management, 2014. 144: p. 247-257. [DOI:10.1016/j.jenvman.2014.06.003] [PMID]
23. Gorjian, S. and B. Ghobadian, Solar desalination: A sustainable solution to water crisis in Iran. Renewable and Sustainable Energy Reviews, 2015. 48: p. 571-584. [DOI:10.1016/j.rser.2015.04.009]
24. Nesterov, O., An assessment of seawater desalination impact on salinities in the Arabian/Persian Gulf using a 3D circulation model. Ocean Modelling, 2025. 194: p. 102503. [DOI:10.1016/j.ocemod.2025.102503]
25. Rafiee, H. and F. Balovi, Paradox of limited water resources in Iran and goals of self-sufficiency in agricultural sector. Preprints, 2017. [DOI:10.20944/preprints201706.0045.v1]
26. Saemian, P., et al., How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies, 2022. 41: p. 101095. [DOI:10.1016/j.ejrh.2022.101095]
27. Teimoori, M., S.M. Mirdamadi, and S.J. Hosseini, Modeling of climate change effects on groundwater resources: The application of dynamic systems approach. International Journal of Agricultural Management and Development, 2018. 9: p. 107-118.
28. Sharafati, A., S.B.H.S. Asadollah, and A. Shahbazi, Assessing the impact of climate change on urban water demand and related uncertainties: A case study of Neyshabur, Iran. Theoretical and Applied Climatology, 2021. 145: p. 473-487. [DOI:10.1007/s00704-021-03638-5]
29. Zakeri, M.A., S.K. Mirnia, and H. Moradi, Assessment of water security in the large watersheds of Iran. Environmental Science & Policy, 2022. 127: p. 31-37. [DOI:10.1016/j.envsci.2021.10.009]
30. Rezaei, A., et al., Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundwater for sustainable development, 2019. 9: p. 100245. [DOI:10.1016/j.gsd.2019.100245]
31. Ghiassi, R. and A. Zeynolabedin, A standardized index for assessing seawater intrusion in coastal aquifers: The SIVI index. Environmental Earth Sciences, 2019. 78: p. 666. [DOI:10.1007/s12665-019-8651-z]
32. Zeynolabedin, A., R. Ghiassi, and M. Dolatshahi Pirooz, Seawater intrusion vulnerability evaluation and prediction: a case study of Qeshm Island, Iran. Journal of Water and Climate Change, 2021. 12(1): p. 265-277. [DOI:10.2166/wcc.2020.220]
33. Chitsazan, M. and et al., Hydrogeological investigation of Qeshm Island. Environmental Earth Sciences, 2017. 76(14).
34. Ziaei, M. and et al., GALDIT assessment of Qeshm. Environmental Earth Sciences, 2021. 80(15).
35. Sedghi, M.M. and H. Zhan, Groundwater flow modeling. Journal of Hydrology, 2020. 584: p. 124662.
36. Paparella, F., D. D'Agostino, and J.A. Burt, Long-term, basin-scale salinity impacts from desalination in the Arabian/Persian Gulf. Scientific Reports, 2022. 12: p. 20549. [DOI:10.1038/s41598-022-25167-5] [PMID] []
37. Fao, AQUASTAT - FAO's Global Information System on Water and Agriculture. 2023.
38. Unesco, Statistics | UN World Water Development Report. 2024.
39. Ingrao, C., et al., Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 2023. 9(8): p. e18507. [DOI:10.1016/j.heliyon.2023.e18507] [PMID] []
40. Agency, U.S.E.P., Secondary drinking water standards: Guidance for nuisance chemicals (EPA 816-F-15-002). 2015, U.S. EPA.
41. Healy, R.W., et al., Water budgets: Foundations for effective water-resources and environmental management (USGS Circular 1308). 2007, U.S. Geological Survey. [DOI:10.3133/cir1308]
42. Todd, D.K., Groundwater Hydrology. 2008: Wiley.
43. Konikow, L.F. and J.D. Bredehoeft, Groundwater Resource Development: Effects and Sustainability. 2020: The Groundwater Project. [DOI:10.21083/978-1-7770541-4-4] [PMID]
44. Noori, R., et al., Decline in Iran's groundwater recharge. Nat Commun, 2023. 14(1): p. 6674. [DOI:10.1038/s41467-023-42411-2] [PMID] []
45. Lazzarini, M., et al., Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophysical Research Letters, 2015. 42(22): p. 9980-9989. [DOI:10.1002/2015GL066534]
46. Hosseinyar, G., et al., Holocene sea-level changes of the Persian Gulf. Quaternary International, 2021. 571: p. 26-45. [DOI:10.1016/j.quaint.2020.11.051]
47. Zeynolabedin, A. and R. Ghiassi, The SIVI index: a comprehensive approach for investigating seawater intrusion vulnerability for island and coastal aquifers. Environmental Earth Sciences, 2019. 78(24): p. 666. [DOI:10.1007/s12665-019-8651-z]
48. Woessner, W.W. and E.P. Poeter, Hydrogeologic Properties of Earth Materials and Principles of Groundwater Flow. 2020: The Groundwater Project. [DOI:10.21083/978-1-7770541-2-0]
49. Loganathan, P., et al., Use of renewable energy for desalination: Implications for developing countries. Desalination, 2006. 192(1-3): p. 1-16.
50. Jiang, Y., China's water security: Current status, emerging challenges and future prospects. Environmental Science & Policy, 2015. 54: p. 106-125. [DOI:10.1016/j.envsci.2015.06.006]
51. Paz, A.M., et al., Salt-affected soils: Field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Italian Journal of Agronomy, 2023. 18(2): p. 2166. [DOI:10.4081/ija.2023.2166]
52. Al-Dakheel, A.J., et al., Long-term assessment of salinity impact on fruit yield in eighteen date palm varieties. Agricultural Water Management, 2022. 269: p. 107683. [DOI:10.1016/j.agwat.2022.107683]
53. Hammami, Z., et al., Evaluation of date palm fruits quality under different irrigation water salinity levels compared to the fruit available in the market. Frontiers in Sustainable Food Systems, 2024. 7: p. 1322350. [DOI:10.3389/fsufs.2023.1322350]
54. Chaganti, V.N. and G.K. Ganjegunte, Quinoa growth and yield performance under salinity stress in arid West Texas. Agrosystems, Geosciences & Environment, 2024. 7(2): p. e20493. [DOI:10.1002/agg2.20493]
55. Shahrokhnia, H. and L. Wu, SALEACH: A new web-based soil salinity leaching model for improved irrigation management. Agricultural Water Management, 2021. 252: p. 106905. [DOI:10.1016/j.agwat.2021.106905]
56. Wang, Y., Soil moisture and salinity dynamics of drip irrigation in saline-alkali soil of Yellow River Basin. Frontiers in Environmental Science, 2023. 11: p. 1130455. [DOI:10.3389/fenvs.2023.1130455]
57. Tarolli, P., et al., Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience, 2024. 27: p. 108830. [DOI:10.1016/j.isci.2024.108830] [PMID] []
58. Lightner, D.V., Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review. Journal of Invertebrate Pathology, 2011. 106(1): p. 110-130. [DOI:10.1016/j.jip.2010.09.012] [PMID] []
59. Zhang, S., et al., A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 2022. 13: p. 970028. [DOI:10.3389/fmicb.2022.970028] [PMID] []
60. Engineers, A.S.o.M., ASME guidelines for watertube boilers. 2019, ASME.
61. Kharaka, Y.K., G. Ambats, and J.J. Thordsen, Chemical characterization of oilfield and geothermal injection waters, in Groundwater geochemistry and its application to subsurface flow studies. 2006. p. 45-64.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.