Write your message
Volume 10 - Summer and Autumn 2018                   ijmt 2018, 10 - Summer and Autumn 2018: 1-6 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi M, Siadat Mousavi S M, Chegini V, Vennell R. Across-channel distribution of the mean and tidal flows in the Khuran Channel, Persian Gulf, Iran. ijmt. 2018; 10 :1-6
URL: http://ijmt.ir/article-1-634-en.html
1- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
2- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
3- Department of Marine Science, University of Otago, Dunedin, New Zealand
Abstract:   (3140 Views)
The Khuran Channel, Southern Iran (26°45’N), is a topographically complex channel which is open at both ends. Owning to its particular geometry, this narrow channel is subjected to strong tidal currents.Across-channel distribution of the mean and tidal flows were obtained over a semidiurnal tidal cycle in the Khuran Channel where the highest tidal velocity in the third day of the secondary spring tide exceeded 140 cm/s. Velocity profiles were obtained using a 614.4 kHz Teledyne RDI Workhorse Broadband ADCP over 13 repetitions of a cross-channel transect. The 3.1 km long transect ran north/south across the channel.The M2frequencywas separated from the observed current using sinusoidal form functions and the least square regression analysis. Contrary to the previous study in this channel, the mean inflow observed in the deep parts of the channel and mean outflow occurs over the shallow slopes, with the maximum magnitudes (15-20cm/s) near the surface in the north side. The maximum lateral shear and convergence were found over slopes located between the middle and the north side of the channel.
Full-Text [PDF 786 kb]   (744 Downloads)    
Type of Study: Research Paper | Subject: Environmental Study
Received: 2017/11/22 | Accepted: 2018/04/30

1. Azizpour, J., S.M. Siadatmousavi, and V. Chegini, (2016), Measurement of tidal and residual currents in the Strait of Hormuz. Estuarine, Coastal and Shelf Science. Vol.178(2),p.101-109. [DOI:10.1016/j.ecss.2016.06.004]
2. Reynolds, R.M., (1993), Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, Vol.(27): p. 35-59. [DOI:10.1016/0025-326X(93)90007-7]
3. Zaker, N., et al., (2011), Dynamics of the Currents in the Strait of Khuran in the Persian Gulf. Journal of Shipping and Ocean Engineering, Vol.1(2).
4. Valle-Levinson, A. and L.P. Atkinson, (1999), Spatial gradients in the flow over an estuarine channel. Estuaries, Vol.(22)2: p. 179-193. [DOI:10.2307/1352975]
5. Wong, K.C., (1994), On the nature of transverse variability in a coastal plain estuary. Journal of Geophysical Research: Oceans, Vol.99(C7): p. 14209-14222. [DOI:10.1029/94JC00861]
6. Valle‐Levinson, A. and K.M. Lwiza, (1995), The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean. Journal of Geophysical Research: Oceans, Vol.100(C9): p. 18551-18563. [DOI:10.1029/95JC01936]
7. Valle‐Levinson, A., K.C. Wong, and K.M. Lwiza, (2000), Fortnightly variability in the transverse dynamics of a coastal plain estuary. Journal of Geophysical Research: Oceans, Vol.105(C2): p. 3413-3424. [DOI:10.1029/1999JC900307]
8. Cáceres, M., A. Valle‐Levinson, and L. Atkinson, (2003), Observations of cross‐channel structure of flow in an energetic tidal channel. Journal of Geophysical Research: Oceans, Vol.108(C4).
9. Doyle, B.E. and R.E. Wilson, (1978), Lateral dynamic balance in the Sandy Hook to Rockaway Point transect. Estuarine and Coastal Marine Science, Vol.6(2): p. 165-174. [DOI:10.1016/0302-3524(78)90098-1]
10. Chant, R.J. and R.E. Wilson, (1997), Secondary circulation in a highly stratified estuary. Journal of Geophysical Research: Oceans, Vol.102(C10): p. 23207-23215. [DOI:10.1029/97JC00685]
11. Hughes, F. and M. Rattray, (1980), Salt flux and mixing in the Columbia River Estuary. Estuarine and Coastal Marine Science, Vol.10(5): p. 479-493. [DOI:10.1016/S0302-3524(80)80070-3]
12. Dyer, K., (1997), Estuaries: a physical introductionWiley. New York.
13. Cameron, W., (1951), On the transverse forces in a British Columbia inlet. Transactions of the Royal Society of Canada, Vol.(45): p. 1-9.
14. Lee, D. and S. Woo, (2011), Characteristics of cross–channel momentum balance at Yeomha Channel, Gyeonggi bay, South Korea. JOURNAL OF COASTAL RESEARCH: p. 1515-1519.
15. Old, C. and R. Vennell, (2001), Acoustic Doppler current profiler measurements of the velocity field of an ebb tidal jet. Journal of Geophysical Research: Oceans, Vol.106(C4): p. 7037-7049. [DOI:10.1029/1999JC000144]
16. Joyce, T.M., (1989), On in situ "calibration" of shipboard ADCPs. Journal of Atmospheric and Oceanic Technology. Vol.6(1): p. 169-172. https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2 [DOI:10.1175/1520-0426(1989)0062.0.CO;2]
17. Lwiza, K., D. Bowers, and J. Simpson, (1991), Residual and tidal flow at a tidal mixing front in the North Sea. Continental Shelf Research. Vol.11(11): p. 1379-1395. [DOI:10.1016/0278-4343(91)90041-4]
18. Preisendorfer, R.W. and C.D. Mobley, (1988), Principal component analysis in meteorology and oceanography. Vol. 425: Elsevier Amsterdam.
19. Pawlowicz, R., B. Beardsley, and S. Lentz, (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences. Vol.28(8): p. 929-937. [DOI:10.1016/S0098-3004(02)00013-4]
20. Hayashi, Y., (1979), Space-time spectral analysis of rotary vector series. Journal of the atmospheric sciences. Vol.36(5): p. 757-766. https://doi.org/10.1175/1520-0469(1979)036<0757:STSAOR>2.0.CO;2 [DOI:10.1175/1520-0469(1979)0362.0.CO;2]
21. Boon, J.D., (2013), Secrets of the tide: tide and tidal current analysis and predictions, storm surges and sea level trends: Elsevier.
22. Parker, B.B., (1991), Tidal hydrodynamics. John Wiley & Sons.
23. Valle-Levinson, A., C. Reyes, and R. Sanay, (2003), Effects of bathymetry, friction, and rotation on estuary-ocean exchange. Journal of Physical Oceanography. Vol.33(11): p. 2375-2393. https://doi.org/10.1175/1520-0485(2003)033<2375:EOBFAR>2.0.CO;2 [DOI:10.1175/1520-0485(2003)0332.0.CO;2]
24. Friedrichs, C.T. and O.S. Madsen, (1992), Nonlinear diffusion of the tidal signal in frictionally dominated embayments. Journal of Geophysical Research: Oceans. Vol.97(C4): p. 5637-5650. [DOI:10.1029/92JC00354]
25. Walters, R.A. and F.E. Werner, (1991), Nonlinear generation of overtides, compound tides, and residuals. Tidal hydrodynamics: p. 297-320.
26. Valle-Levinson, A. and K.M. Lwiza, (1997), Bathymetric influences on the lower Chesapeake Bay hydrography. Journal of Marine Systems, Vol.12(1): p. 221-236. [DOI:10.1016/S0924-7963(96)00099-1]
27. Valle-Levinson, A., W.C. Boicourt, and M.R. Roman, (2003), On the linkages among density, flow, and bathymetry gradients at the entrance to the Chesapeake Bay. Estuaries, Vol.26(6): p. 1437-1449. [DOI:10.1007/BF02803652]

Send email to the article author

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.