Write your message
Winter and Spring 2021                   Back to the articles list | Back to browse issues page

XML Print


1- Department of Civil Engineering, University of Qom, Iran
Abstract:   (421 Views)
Probabilistic seismic demand models (PSDMs) for typical South Pars fixed pile-founded offshore platforms, utilizing probabilistic seismic demand analysis (PSDA) have been presented in this study. It expresses the probability that a system experiences a certain level of engineering demand parameter (EDP) for a given intensity measure (IM) level. Utilizing Bin approach, 80 ground motion records have been selected. A three dimensional (3D) nonlinear model has been generated considering the effects of soil-pile-structure interaction (SPSI) and analyzed for each ground motion. The process involves a modal analysis to determine natural frequency as well as a static pushover analysis to establish yield values, and mode shape information, and finally 80 dynamic time-history analyses to determine demand, given IMs. With the probabilistic models being traditionally conditioned on a single seismic IM and single EDP, the degree of uncertainty in the models is dependent on the IM and EDP used. The present study evaluated optimal PSDMs build from 16 IMs against a wide range of EDPs in levels of local, intermediate and global. From a large combination of IM-EDP pairs, a selection of the optimal pairs has been made owing to the criteria of practicality, effectiveness, efficiency, and sufficiency. Results indicate the absolute superiority of velocity-related IMs compared to acceleration, displacement and time-related ones for most of EDP types. In particular, Housner Intensity-Global Drift and Specific Energy Density-Global Ductility (in global level), Housner Intensity-Jacket Drift (in intermediate level) and Housner Intensity- TopDeck Differential Settlement (in local level) result in optimal pairs. Conversely, Sa(T1, 5%), the widely used IM in probabilistic assessment of fixed pile-founded offshore platforms, demonstrates relatively poor performance in predicting the demand parameters.
Full-Text [PDF 2024 kb]   (98 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2021/02/11 | Accepted: 2021/06/19

References
1. Yasseri, S.F., Ossei, R., (2004), Seismic fragility analysis of pile-founded offshore platforms, Proc. International Offshore and Polar Eng. Conference, Toulon, France.
2. El-Din, M. N. and Kim, J., (2014), Seismic performance evaluation and retrofit of fixed jacket offshore platform structures, J. Performance of Constructed Facilities. [DOI:10.1061/(ASCE)CF.1943-5509.0000576]
3. Cornell, CA., (1995), Structural reliability-some contributions to offshore technology, Proceedings of the Offshore Technology Conference, 7753. Paper OTC. [DOI:10.4043/7753-MS]
4. ISO. (2004), ISO 19902 petroleum and natural gas industries-fixed steel offshore structures. International Organization for Standardization.
5. Ronalds, B.F., Trench, D.J., Pinna R., (2007), On the relationship between platform topology, topside weight and structural reliability under storm overload. J. Constr. Steel Res., 63(8):1016-23. [DOI:10.1016/j.jcsr.2006.11.006]
6. Asgarian, B., Aghakouchak, A. A., Alanjari, P. and Assareh, M. A., (2008), Incremental Dynamic Analysis of Jacket Type Offshore Platforms Considering Soil-Pile Interaction, 14th World Conference on Earthquake Engineering, Beijing China.
7. Vamvatsikos, D., (2002), Seismic Performance Capacity and Reliability of Structures as Seen through Incremental Dynamic Analysis, Ph.D. Thesis. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
8. Ajamy A., Zolfaghari M.R., Asgarian B., Ventura C.E., (2014), Probabilistic seismic analysis of offshore platforms incorporating uncertainty in soil-pile-structure interactions, J. Constr. Steel Res.; 101, 265-279. [DOI:10.1016/j.jcsr.2014.05.024]
9. Elsayed, T., El-Shaib, M., Gbr, k., (2014), Reliability of fixed offshore jacket platform against earthquake collapse, J. Ships Offshore Struct., Vol.11 (2), p. 167-181. [DOI:10.1080/17445302.2014.969473]
10. Anderson, T.W., & Darling, D.A., (1954), A test of goodness-of-fit, J. Am. Stat. Assoc, Vol. 49, p.765-769. [DOI:10.1080/01621459.1954.10501232]
11. Abyani, M., Asgarian, B., Zarrin, M., (2017), Statistical assessment of seismic fragility curves for steel jacket platforms considering global dynamic instability, J. of Ships and Offshore Struc., Vol.13 (4), p. 366-374. [DOI:10.1080/17445302.2017.1386078]
12. Abyani, M., Bahaari, M. R., Zarrin, M., & Nasseri, M. (2019), Effects of sample size of ground motions on seismic fragility analysis of offshore jacket platforms using Genetic Algorithm, J. Ocean Eng., Vol. 189. [DOI:10.1016/j.oceaneng.2019.106326]
13. Cornell, CA., & Krawinkler, H., (2000), Progress and challenges in seismic performance assessment, PEER Center News, Vol.3(2).
14. Shome, N., (1999), Probabilistic Seismic Demand Analysis of Nonlinear Structures. PhD. Thesis, Dep. Civil and Envir. Eng. Stanford University, Stanford, CA.
15. Shome, N., and Cornell, C.A., (1999), Probabilistic seismic demand analysis of nonlinear structures, Reliability of Marine Structures Report No. RMS-35, Dept. of Civil and Envir. Engineering, Stanford University, California.
16. Luco, N., (2002). Probabilistic seismic demand analysis, SMRF connection fractures, and near-source effects. Ph.D. Thesis. Dep. Civil and Environ. Eng. Stanford University, Stanford, CA.
17. Gardoni, P., Der Kiureghian, A., & Mosalam, K.M., (2002), Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations, J. Eng. Mech., Vol. 128(10), p. 1024-1038. [DOI:10.1061/(ASCE)0733-9399(2002)128:10(1024)]
18. Mackie, K., & Stojadinovic, B., (2003), Seismic demands for performance-based design of bridges, PEER 2003/16 Report, PEER Center, California.
19. Gardoni, P., Mosalam, K.M., & Der Kiureghian, A., (2003), Probabilistic seismic demand models and fragility estimates for RC bridges, J. Earthq. Eng., Vol. 7(1), p. 79-106. [DOI:10.1080/13632460309350474]
20. Zhong, J., Gardoni, P., Rosowsky, D., & Haukaas, T., (2008), Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with two-column bents, J. Eng. Mech., Vol. 134(6), p. 495-504. [DOI:10.1061/(ASCE)0733-9399(2008)134:6(495)]
21. Huang, Q., Gardoni, P., & Hurlebaus, S., (2010), Probabilistic seismic demand models and fragility estimates for reinforced concrete highway bridges with one single-column bent, J. Eng. Mech., Vol.136(11), p. 1340-1353. [DOI:10.1061/(ASCE)EM.1943-7889.0000186]
22. Padgett, J. E., Neilson, B. G., & DesRoches, R., (2008), Selection of Optimal Intensity Measures in Probabilistic Seismic Demand Models of Highway Bridge Portfolios, J. Earthq. Eng. Struc. Dyn., Vol.37. [DOI:10.1002/eqe.782]
23. Werner, S.D., Rix, G.J., & DesRoches, R., (2008), Seismic risk management for seaports, Paper presented at the 14th World Conference on Earthquake Engineering, Beijing, China.
24. Rix, G.J., Burden, L., & Werner, S.D., (2009), Seismic risk management for port systems, TCLEE Conference, Oakland, CA.
25. Werner, S.D., DesRoches, R., Rix, G.J., & Shafieezadeh, A., (2009), Fragility models for container cargo wharves, Paper presented at the TCLEE 2009 Conference, Oakland, CA. [DOI:10.1061/41050(357)81]
26. Yang, C.W., DesRoches, R., & Rix, G.J., (2012), Numerical fragility analysis of vertical-pile-supported wharves in the western United States, J. Earthq. Eng.m Vol.16(4), p. 579-594. [DOI:10.1080/13632469.2011.641063]
27. Shafieezadeh, A., (2011), Seismic vulnerability assessment of wharf structures, Ph.D. dissertation. Georgia Institute of Technology, Atlanta, GA.
28. Amirabadi, R., Bargi, Kh., Dolatshahi, M., Heidary Torkamani, H., & Maccullough, N., (2014), Determination of optimal probabilistic seismic demand models for pile-supported wharves, Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, Vol. 10(9), p. 1119-1145. [DOI:10.1080/15732479.2013.793723]
29. Berahman, F. and Behnamfar, F., (2009), Probabilistic Seismic Demand Model and Fragility Estimates for critical Failure modes of Un-Anchored Steel Storage Tanks in Petroleum Complexes, J. Probabilistic Eng. Mech. Elsevier, Vol. 24, p.527-536. [DOI:10.1016/j.probengmech.2009.03.005]
30. Lucchini, A., Franchin, P., & Mollaioli, F., (2015), Probabilistic Seismic Demand. Model for Nonstructural Components, Earthq. Eng. Struc. Dyn., Vol. 45, p. 599-617. [DOI:10.1002/eqe.2674]
31. Hariri-Ardebili, M. A. and Saouma, V. E., (2016), Probabilistic Seismic Demand Model and Optimal Intensity Measure for Concrete Dams, J. Struct. Safety, Elsevier, Vol. 59, p. 67-85. [DOI:10.1016/j.strusafe.2015.12.001]
32. Kaynia, A. M., (2019), Seismic Consideration in Design of offshore Wind Turbines, Journal of Soil Dynamics and Earthquake Engineering, 124, 399-407. [DOI:10.1016/j.soildyn.2018.04.038]
33. Kia M., Amini A., Bayat M. and Ziehl P., (2020), Probabilistic Seismic Demand Analysis of Structures Using Reliability Approaches, Journal of Earthquake and Tsunami, [DOI:10.1142/S1793431121500111]
34. American Petroleum Institute, (2000), Recommended practice for planning, designing and constructing fixed offshore platforms. API Recommended Practice 2A (RP-2A). 21st ed. American Petroleum Institute, Washington, D.C.
35. Shome, N., Cornell, C.A., Bazzurro, P., & Caraballo, J.E., (1998), Earthquakes, records, and nonlinear responses. Earthquake Spectra, 14(3), 467-500. [DOI:10.1193/1.1586011]
36. Foutch, D.A., Yu, C.Y., & Wen, Y.K., (1992), Reliability of steel frame buildings under seismic load. 10th World Conference on Earthq. Eng., Rotterdam, Netherlands.
37. Pacific earthquake engineering research center., (2006), PEER NGA Database. Berkeley: University of California, [http://peer.berkeley.edu/nga/].
38. NEHRP., (2001), NEHRP recommended provisions for seismic regulations for new buildings and other structures, Washington, DC, USA: Building Seismic Safety Council.
39. Kramer, SL., (1996), Geotechnical earthquake engineering. Upper Saddle River, NJ.
40. Matlock, H., (1970), Correlations for Design of Laterally Loaded Piles in Soft Clay, Second Annual Offshore Technology Conference, Houston, Vol.1204, p. 557 - 594. [DOI:10.4043/1204-MS]
41. Reese, L. C., & Cox, W. R., (1975), Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay, Offshore Technology Conference, OTC 2312. [DOI:10.4043/2312-MS]
42. O'Neill, M. W., & Murchinson, J. M., (1983), An Evaluation of p-y Relationships in Sands, A Report to the American Petroleum Institute.
43. Wesselink, B.D., Murff, J.D., Randolph, M.F., Nuenz, I.L & Hyden, A.M., (1988), Analysis of Centrifuge Model Test Data from Laterally Loaded Piles in Calcareous Sand, Conference Paper, p. 261-269, Engineering for Calcareous Sediments, Jewell & Andrews Eds.
44. Sap 2000, (2005), Structural Analysis Program, Analysis Reference Manual, Computers and structures, Inc., Berkeley, California, USA.
45. American Petroleum Institute, (2008), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - Working Stress Design. API recommended practice (RP-2A-WSD), 21st Edition, Errata and Supplement.
46. Anagnostopoulos, H. G., (1983), Cyclic Axial Pile Response-Alternative Analyses. Proceedings of the Conference on Geotechnical Practice in Offshore Engineering, ASCE, Austin, Texas.
47. Coyle, H.M. and Suliaman, I.H., (1967), Skin Friction for Steel Piles in Sand. Journal of the Soil Mechanics and Foundation Division, Proc., American Society of Civil Engineers, Vol. 93(SM6), p. 261- 278. [DOI:10.1061/JSFEAQ.0001055]
48. Reese, L. C. and O'Neill, M., (1971), Criteria for Design of Axially Loaded Drilled Shafts. Center for Highway Research Report, University of Texas.
49. Rathje EM, Kottke RA, Trent WL., (2010), Influence of input motion and site property variabilities on seismic site response analysis, J Geotech. Geoenviron. Eng. ASCE, Vol. 136(4). [DOI:10.1061/(ASCE)GT.1943-5606.0000255]
50. Hashash, Y., Groholski, D., Phillips, C., Park, D., & Musgrove M., (2012), DEEPSOIL 5.1. User Manual and Tutorial.
51. Cornell, C.A., Jalayer, F., Hamburger, R.O., & Foutch, D.A., (2002), Probabilistic basis for 2000 SAC/FEMA steel moment frame guidelines. J. Struct. Eng. April, Vol. 128(4), 526-533. [DOI:10.1061/(ASCE)0733-9445(2002)128:4(526)]
52. Mollaioli, F., Lucchini, A., Cheng, Y., & Monti, G., (2013), Intensity measures for the seismic response prediction of base-isolated buildings. Bull Earthq. Eng., Vol. 11(5):1841-1866. [DOI:10.1007/s10518-013-9431-x]
53. Wang, X., Shafieezadeh, A., & Ye, A., (2018) Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground, Bull Earthquake Eng. [DOI:10.1016/j.soildyn.2019.02.012]
54. Ji, J., Elnashai, A.S., Kuchma, D.A., (2007), Seismic fragility assessment for reinforced concrete high-rise buildings - Report 07-14, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign.
55. Pejović, J and Jancović, S., (2015), Dependence of high-rise buildings response on the earthquake Intensity. GRADEVINAR; Vol. 67(8), p. 749-759.
56. Reed JW, Kassawara RP., (1990), A criterion for determining exceedance of the operating basis earthquake, Nucl. Eng. Des.; Vol.123, p. 387-396. [DOI:10.1016/0029-5493(90)90259-Z]
57. Arias A., (1970), A measure of earthquake intensity. In: Hansen RJ (ed) Seismic Design for Nuclear Power Plants. MIT Press, Cambridge, p. 438-483.
58. Housner GW., (1959), Behavior of structures during earthquakes, J. Eng. Mech Div; Vol. 85, p. 109-130 [DOI:10.1061/JMCEA3.0000102]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.