1. Dean, R.G., Dalrymple, R.A., (1991), Water Wave Mechanics for Engineers and Scientists, Advanced Series on Ocean Engineering, World Scientific Publication, Singapore
2. Shao, S.D., (2006), Simulation of breaking wave by SPH method coupled with model, J. Hydraul. Res., 3, 338–349.
3. Shao, S.D., Changming, J.i., (2006), SPH computation of plunging waves using a 2-D sub particle scale (SPS) turbulence model, Int. J. Numer. Meth. Fl., 51, 913–936.
4. Lemos, C., (1992), Wave Breaking, A Numerical Study, Lecture Notes in Engineering, Springer, Berlin,.
5. Takikawa, K., Yamada F., Matsumoto K.,(1997), Internal characteristics and numerical analysis of plunging breaker on a slope, Coast. Eng., 31, 143–161.
6. Lin, P.Z., Liu P.L.F., (1998), A numerical study of breaking waves in the surf zone, J. Fluid Mech., 359, 239–264.
7. Liu, P.L.F., Lin P.Z., Chang KA, Sakakiyama T., (1999), Numerical modelling of wave interaction with porous structures, J. Waterw. Port Coast. Ocean Eng., 125(6), 322–330.
8. Li, T.Q., Troch, P., Rouck J.D., (2004), Wave overtopping over a sea dyke , J. Comput. Phys., 198, 686–726.
9. Khayyer, A., Goth, H., Shao, S.D.,(2008), Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves, Coast. Eng., 55, 236–250.
10. Lucy, L.B.,(1977), A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013–1024.
11. Gingold, R.A., Monaghan, J.J., (1977), Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375–389.
12. Shao S.D, Gotoh H., (2005), Turbulence particle models for tracking free surfaces, J. Hydraul. Res., 43(3), 276–289.
13. Shao S.D., (2006), Incompressible SPH simulation of wave breaking and overtopping with turbulence modeling, Int. J. Numer. Meth. Fl., 50, 597–621.
14. Gotoh H, Shibahara T, Sakai T., (2001), Sub-particle-scale turbulence model for the MPS method Lagrangian flow model for hydraulic engineering, Comput. Fluid Dyn. J., 4, 339–347.
15. Rogers, B.D., Dalrymple, R.A., (2004), SPH modeling of breaking waves. Proc. 29th Intl. Conference on Coastal Engineering, World Scientific Press, pp. 415 – 427.
16. Issa, R., Violeau, D., (2009), Modelling a Plunging Breaking Solitary Wave with Eddy-Viscosity Turbulent SPH Models, CMC, vol.8, no.3, pp.151-164.
17. Nadaoka, K., Hino, M., Koyano, Y., (1989), Structure of the turbulent-flow field under breaking waves in the surf zone, J. Fluid Mech., 204, 359–387.
18. Ting, F. C. K., Kirby, J. T., (1994), Observation of undertow and turbulence in a laboratory surf zone, Coast. Eng., 24, 51–80.
19. Ting, F. C. K., Kirby, J. T., (1995), Dynamics of surf-zone turbulence in a strong plunging breaker, Coast. Eng., 24, 177–204.
20. Stansby, P. K., Feng, T., (2005), Kinematics and depth-integrated terms in surf zone waves from laboratory measurement, J. Fluid Mech., 529, 279–310.
21. Kimmoun, O., Branger, H., (2007), A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach, J. Fluid Mech., 588, 353–397.
22. Li, Y., (2000), Tsunamis: Non-breaking and breaking solitary wave run-up. Rep. KH-R-60, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA.
23. Li, Y., Raichlen, F., (2003), Energy balance model for breaking solitary wave run up, J. Waterw. Port Coast. Ocean Eng., 129 (2), 47 – 59.
24. Monaghan, J. J.,(1992), Smoothed Particle Hydrodynamics, Annu. Rev. Astron. Astr., 30, 543–574.
25. Monaghan, J. J.,(1994), Simulating free surface flows with SPH, J. Comput. Phys., 110, 399–406.
26. Liu , G.R.,(2003), Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, pp.692.
27. Crespo, A.J.C.,(2008), Application of the Smoothed Particle Hydrodynamics model SPHysics to free-surface hydrodynamic, PhD Thesis, Universidad de Vigo.
28. Morris, J., Fox, P., and Zhu, Y., (1997), Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 214–226.
29. Lo, E. and Shao, S., (2002), Simulation of near-shore solitary waves mechanics by an incompressible SPH method, Appl. Ocean Res., 24, 275–286.
30. Dalrymple, R.A., Rogers B.D., (2006), Numerical modeling of water waves with the SPH method, Coast. Eng., 53,141 – 147.
31. Wendland, H., (1995), Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4(1), 389– 396.
32. Monaghan, J. J., (1989), On the Problem of Penetration in Particle Methods, J. Comput. Phys., 82, 1–15.
33. Randles, P. and Libersky, L., (1996), Smoothed Particle Hydrodynamics some recent improvements and applications, Comput. Method Appl. M., 138, 375–408.
34. Bonet, J., Lok, T.S., (1999), Variational and momentum preservation aspects of smooth particle hydrodynamic formulation, Comput. Method Appl. M., 180, 97–115.
35. Bonet, J., Kulasegaram, S., (2000), Correction and stabilization of smooth particle hydrodynamic methods with applications in metal forming simulations, Int. J. Numer. Meth. Eng., 47, 1189 –1214.
36. Colagrossi, A. and Landrini, M., (2003), Numerical simulation of interfacial flows by Smoothed Particle Hydrodynamics, J. Comput. Phys., 191,448–475.
37. Dilts, G. A.,(1999), Moving-LeastSquares-Particle Hydrodynamics I. Consistency and stability, Int. J. Numer. Meth. Eng., 44, 1115–1155.
38. Koshizuka S, Tamako H, Oka Y., (1995), A particle method for incompressible viscous flow with fluid fragmentation, J. Comput. Fluid D., 4, 29–46.
39. Monaghan, J. J. and Kos, A., (1999), Solitary Waves on a Cretan Beach, J. Waterw. Port Coast. Ocean Eng., 125: 145-154.
40. Rogers, B.D., Dalrymple, R.A., (2008), SPH modeling of tsunami waves: Advances in coastal and ocean engineering, Advanced Numerical Models for Tsunami Waves and Runup, Vol. 10.World Scientific.
41. Gomez-Gesteira, M., Cerqueiro, D., Crespo, C., Dalrymple, R.A., (2005), Green water overtopping analyzed with a SPH model, Ocean Eng., 32, 223–238.
42. Battjes, J.A.,(1974), Surf similarity, 14th Coast. Eng. Conf., ASCE, pp. 466– 480.
43. Ketabdari, M. J., Roozbahani, A. N.,(2013), Numerical Simulation of Plunging Wave Breaking by the Weakly Compressible Smoothed Particle Hydrodynamic Method, J. Appl. Mech. Tech. Phys., Vol. 54,No. 3, p p. 477– 486.
44. Vinje, T., Brevig, P., (1981), Numerical Simulation of Breaking Waves, J. Advance Water Resources 4, 77–82.
45. Mahmoudi, A., Hakimzadeh, H. and Ketabdari, M.J., (2014), Numerical Simulation of Non-Reflected Wave in a Tank Using WCSPH Method, Proceedings of 11th International Conference on Coasts, Ports & Marine Structures, ICOPMAS.
46. Xu, R., (2010), An improved incompressible smoothed particle hydrodynamics method and its application in free-surface simulations, PhD Dissertation, University of Manchester, UK.
47. Liu, S.X., Wang, X.T., Li, M.G., Guo, M.Y., (2003), Active absorption wave maker system for irregular waves, China Ocean Engineering, Vol 17, No 2, pp 203-214.