Write your message


Volume 12 - Summer and Autumn 2019                   ijmt 2019, 12 - Summer and Autumn 2019: 1-8 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tamimi V, Seif M S, Shahvaghar-Asl S, Naeeni S T O, Zeinoddini M. FIV Energy Harvesting from Sharp Edge Square and Diamond Oscillators. ijmt 2019; 12 :1-8
URL: http://ijmt.ir/article-1-648-en.html
1- School of Civil Engineering, College of Engineering, University of Tehran
2- Department of Mechanical Engineering, Sharif University of Technology
3- Department of Civil Engineering, Sharif University of Technology
4- Department of Civil Engineering, K.N.Toosi University of Technology
Abstract:   (4890 Views)
The horizontal kinetic energy of the fluid flow, from on-land wind to ocean tidal stream, is one of the most promising sources of the energy. In the field of renewable energies, power extraction from Flow Induced Vibration (FIV) of bluff bodies is a fast growing research area which has seen a great advancement over the last decade. In this study, the FIV energy harvesting potential of a sharp edge square cylinder in two different flow incidences is investigated. The square cylinder, depending on its orientation with respect to the incident flow, demonstrates VIV or galloping types of responses. The results indicate that the square cylinder with a flat side perpendicular to the flow has a galloping type of response. In contrast, the same cylinder with a sharp vertex pointing the flow (diamond configuration) shows a VIV type of response. The hydroelastic efficiency of the resonating square cylinder is significantly higher than that with the galloping type of response. This shows the great advantages of diamond VIV excavators over square galloping harvesters.
Full-Text [PDF 676 kb]   (1693 Downloads)    
Type of Study: Research Paper | Subject: Offshore Structure
Received: 2019/01/13 | Accepted: 2019/06/15

References
1. Fontaine, E., Morel, J.P., Damy, G., Repecaud, M., Stassen, Y., Molin, B., De Langre, E., (2003), VIV on risers with top-tensioning buoyancy-cans. Part 1: Numerical modelling and simplified analysis, Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30.
2. Blevins, R., (2004), Model for Forces on and Stability of a Cylinder in a Wake, Proc Flow Induced Vibr Conf., E de Langre, ed, Ecole Polytechnique, Paris.
3. Williamson, C.H.K., Govardhan, R.N., (2004), Vortex-induced vibrations. Annual Review, Journal of Fluid Mechanics, 36:413-455. [DOI:10.1146/annurev.fluid.36.050802.122128]
4. Bearman, P.W., (1984), Vortex shedding from oscillating bluff bodies. Annual Review, Journal of Fluid Mechanics, 16:195-222. [DOI:10.1146/annurev.fl.16.010184.001211]
5. Parkinson, G.V., (1989), Phenomena and modelling of flow-induced vibrations of bluff bodies, Progress in Aerospace Sciences, 26:169-224. [DOI:10.1016/0376-0421(89)90008-0]
6. Sarpkaya, T., (2004), A critical review of the intrinsic nature of vortex-induced vibrations, Journal of Fluids and Structures, 19:389-447. [DOI:10.1016/S0889-9746(04)00035-0]
7. Gabbai, R.D. and Benaroya, H., (2005), An overview of modelling and experiments of vortex-induced vibration of circular cylinders, Journal of Sound and Vibration, 616:282-575. [DOI:10.1016/j.jsv.2004.04.017]
8. Blevins, R.D., (1990), Flow-Induced Vibration, 2nd edn, Van Nostrand Reinhold.
9. Naudascher, E. and Rockwell, D., (2005), Flow-induced vibrations: an engineering guide, Dover.
10. Païdoussis, M.P., Price, S. and De Langre, E., (2010), Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press. [DOI:10.1017/CBO9780511760792]
11. Nemes, A., Zhao, J., Lo Jacono, D., Sheridan, J., (2012), The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack, Journal of Fluid Mechanics, 102-130. [DOI:10.1017/jfm.2012.353]
12. Barrero-Gil, A. and Fernandez-Arroyo, P., (2013), Maximum vortex-induced vibrations of a square prism, Wind and Structures, 16(4):341-354. [DOI:10.12989/was.2013.16.4.341]
13. Zhao, J., Leontini, J.S., Lo Jacono, D. and Sheridan, J., (2014), Fluid-structure interaction of a square cylinder at different angles of attack, Journal of Fluid Mechanics,747:688-721. [DOI:10.1017/jfm.2014.167]
14. Xu-Xu, J., Barrero-Gil, A., Velazquez, A., (2016), Dual mass system for enhancing energy extraction from Vortex-Induced Vibrations of a circular cylinder, International Journal of Marine Energy,16:250-261. [DOI:10.1016/j.ijome.2016.08.002]
15. Obasaju, E.D., Ermshaus, R. and Naudascher, E, (1990), Vortex-induced streamwise oscillations of a square-section cylinder in a uniform stream, J. Fluid Mech, 213:171-189. [DOI:10.1017/S0022112090002270]
16. Dutta, S., Panigrahi, P.K. and Muralidhar, K., (2008), Experimental investigation of flow past a square cylinder at an angle of incidence, Journal of Engineering Mechanics,134:788-803. [DOI:10.1061/(ASCE)0733-9399(2008)134:9(788)]
17. Bernitsas, M.M. and Raghavan, K., (2004), Converter of Current/Tide/Wave Energy, Provisional Patent Application, U.S. Patent and Trademark Office, Serial No. 60/628,252.
18. Bernitsas, M.M., Raghavan, K. and Ben-Simon, Y., (2008), Vivace (vortex induced vibrationaquatic clean energy): A new concept in generation of clean and renewableenergy from fluid flow, J. Offshore Mech. Arct. Eng. Trans. ASME, 130 041101:1-15. [DOI:10.1115/1.2957913]
19. Chang, C.C., Kumar, R.A. and Bernitsas M.M., (2011), VIV and galloping of single circular cylinder with surface roughness at 3.0x104≤Re≤1.2x105, Ocean Eng., 38-16, 1713-1732. [DOI:10.1016/j.oceaneng.2011.07.013]
20. Park, H., Bernitsas, M.M. and Kumar, R.A., (2013), Enhancement of flow-induced motion of rigid circular cylinder on springs by localized surface roughness at 3.0 x 104 < Re < 1.2x 105, Ocean Eng.,72:403-15. [DOI:10.1016/j.oceaneng.2013.06.026]
21. Kim, E.S. and Bernitsas, M.M., (2016), Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion, Applied Energy, 170: 92-100. [DOI:10.1016/j.apenergy.2016.02.116]
22. Kim, E.S., Bernitsas, M.M. and Kumar R.A., (2013), Multicylinder Flow-Induced Motions: Enhancement by Passive Turbulence Control at 28,000DOI:10.1115/1.4007052]
23. Nishi, Y., Ueno, Y., Nishio, M., Quadrante, L.A.R., Kokubun, K., (2014), Power extraction using flow-induced vibration of a circular cylinder placed near another fixed cylinder, Journal of Sound and Vibration, 333: 2863-2880. [DOI:10.1016/j.jsv.2014.01.007]
24. Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H., (2013), Piezoelectric energy harvesting from transverse galloping of bluff bodies, Smart Mater. Struct., 22:015014 (11pp). [DOI:10.1088/0964-1726/22/1/015014]
25. Zhang, J., Xu, G., Liu, F., Lian, J. and Yan, X., (2016), Experimental investigation on the flow induced vibration of an equilateral triangle prism in water, Applied Ocean Research,61:92-100. [DOI:10.1016/j.apor.2016.08.002]
26. Hémon, P., Amandolese, X. and Andrianne, T., (2017), Energy harvesting from galloping of prisms: A wind tunnel experiment, Journal of Fluids and Structures, 70:390-402. [DOI:10.1016/j.jfluidstructs.2017.02.006]
27. Zeinoddini, M., Tamimi, V. and Bakhtiari, A., (2014), WIV response of tapered circular cylinders in a tandem arrangement: An experimental study, Applied Ocean Research, 47:162-173. [DOI:10.1016/j.apor.2014.05.001]
28. Zeinoddini, M., Tamimi, V. and Seif, M.S., (2013), Stream-wise and cross-flow vortex induced vibrations of single tapered circular cylinders: an experimental study, Applied Ocean Research, 42:124-35. [DOI:10.1016/j.apor.2013.05.005]
29. Tamimi, V., Naeeni, S.T.O. and Zeinoddini, M., (2017), Flow induced vibrations of a sharp edge square cylinder in the wake of a circular cylinder, Applied Ocean Research, 66:117-130. [DOI:10.1016/j.apor.2017.05.011]
30. Assi, G.R.S., (2009), Mechanisms for flow-induced vibration of interfering bluff bodies, PhD thesis, Imperial College London, London, UK.
31. Morse, T.L., Govardhan, R.N. and Williamson, C.H.K., (2008), The effect of end conditions on the vortex-induced vibration of cylinders, Journal of Fluids and Structures, 24:1227-39. [DOI:10.1016/j.jfluidstructs.2008.06.004]
32. Blevins, R.D. and Coughran, C.H.S., (2009), Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number, Journal of Fluids Engineering, Vol. 131/101202-1. [DOI:10.1115/1.3222904]
33. Khalak, A. and Williamson, C.H.K., (1999), Motions, forces and mode transitions in vortex- induced vibrations at low mass-damping, Journal of Fluids and Structures,13:813-51. [DOI:10.1006/jfls.1999.0236]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.