1. Fontaine, E., Morel, J.P., Damy, G., Repecaud, M., Stassen, Y., Molin, B., De Langre, E., (2003), VIV on risers with top-tensioning buoyancy-cans. Part 1: Numerical modelling and simplified analysis, Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, May 25-30.
2. Blevins, R., (2004), Model for Forces on and Stability of a Cylinder in a Wake, Proc Flow Induced Vibr Conf., E de Langre, ed, Ecole Polytechnique, Paris.
3. Williamson, C.H.K., Govardhan, R.N., (2004), Vortex-induced vibrations. Annual Review, Journal of Fluid Mechanics, 36:413-455. [
DOI:10.1146/annurev.fluid.36.050802.122128]
4. Bearman, P.W., (1984), Vortex shedding from oscillating bluff bodies. Annual Review, Journal of Fluid Mechanics, 16:195-222. [
DOI:10.1146/annurev.fl.16.010184.001211]
5. Parkinson, G.V., (1989), Phenomena and modelling of flow-induced vibrations of bluff bodies, Progress in Aerospace Sciences, 26:169-224. [
DOI:10.1016/0376-0421(89)90008-0]
6. Sarpkaya, T., (2004), A critical review of the intrinsic nature of vortex-induced vibrations, Journal of Fluids and Structures, 19:389-447. [
DOI:10.1016/S0889-9746(04)00035-0]
7. Gabbai, R.D. and Benaroya, H., (2005), An overview of modelling and experiments of vortex-induced vibration of circular cylinders, Journal of Sound and Vibration, 616:282-575. [
DOI:10.1016/j.jsv.2004.04.017]
8. Blevins, R.D., (1990), Flow-Induced Vibration, 2nd edn, Van Nostrand Reinhold.
9. Naudascher, E. and Rockwell, D., (2005), Flow-induced vibrations: an engineering guide, Dover.
10. Païdoussis, M.P., Price, S. and De Langre, E., (2010), Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press. [
DOI:10.1017/CBO9780511760792]
11. Nemes, A., Zhao, J., Lo Jacono, D., Sheridan, J., (2012), The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack, Journal of Fluid Mechanics, 102-130. [
DOI:10.1017/jfm.2012.353]
12. Barrero-Gil, A. and Fernandez-Arroyo, P., (2013), Maximum vortex-induced vibrations of a square prism, Wind and Structures, 16(4):341-354. [
DOI:10.12989/was.2013.16.4.341]
13. Zhao, J., Leontini, J.S., Lo Jacono, D. and Sheridan, J., (2014), Fluid-structure interaction of a square cylinder at different angles of attack, Journal of Fluid Mechanics,747:688-721. [
DOI:10.1017/jfm.2014.167]
14. Xu-Xu, J., Barrero-Gil, A., Velazquez, A., (2016), Dual mass system for enhancing energy extraction from Vortex-Induced Vibrations of a circular cylinder, International Journal of Marine Energy,16:250-261. [
DOI:10.1016/j.ijome.2016.08.002]
15. Obasaju, E.D., Ermshaus, R. and Naudascher, E, (1990), Vortex-induced streamwise oscillations of a square-section cylinder in a uniform stream, J. Fluid Mech, 213:171-189. [
DOI:10.1017/S0022112090002270]
16. Dutta, S., Panigrahi, P.K. and Muralidhar, K., (2008), Experimental investigation of flow past a square cylinder at an angle of incidence, Journal of Engineering Mechanics,134:788-803. [
DOI:10.1061/(ASCE)0733-9399(2008)134:9(788)]
17. Bernitsas, M.M. and Raghavan, K., (2004), Converter of Current/Tide/Wave Energy, Provisional Patent Application, U.S. Patent and Trademark Office, Serial No. 60/628,252.
18. Bernitsas, M.M., Raghavan, K. and Ben-Simon, Y., (2008), Vivace (vortex induced vibrationaquatic clean energy): A new concept in generation of clean and renewableenergy from fluid flow, J. Offshore Mech. Arct. Eng. Trans. ASME, 130 041101:1-15. [
DOI:10.1115/1.2957913]
19. Chang, C.C., Kumar, R.A. and Bernitsas M.M., (2011), VIV and galloping of single circular cylinder with surface roughness at 3.0x104≤Re≤1.2x105, Ocean Eng., 38-16, 1713-1732. [
DOI:10.1016/j.oceaneng.2011.07.013]
20. Park, H., Bernitsas, M.M. and Kumar, R.A., (2013), Enhancement of flow-induced motion of rigid circular cylinder on springs by localized surface roughness at 3.0 x 104 < Re < 1.2x 105, Ocean Eng.,72:403-15. [
DOI:10.1016/j.oceaneng.2013.06.026]
21. Kim, E.S. and Bernitsas, M.M., (2016), Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion, Applied Energy, 170: 92-100. [
DOI:10.1016/j.apenergy.2016.02.116]
22. Kim, E.S., Bernitsas, M.M. and Kumar R.A., (2013), Multicylinder Flow-Induced Motions: Enhancement by Passive Turbulence Control at 28,000DOI:10.1115/1.4007052]
23. Nishi, Y., Ueno, Y., Nishio, M., Quadrante, L.A.R., Kokubun, K., (2014), Power extraction using flow-induced vibration of a circular cylinder placed near another fixed cylinder, Journal of Sound and Vibration, 333: 2863-2880. [
DOI:10.1016/j.jsv.2014.01.007]
24. Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H., (2013), Piezoelectric energy harvesting from transverse galloping of bluff bodies, Smart Mater. Struct., 22:015014 (11pp). [
DOI:10.1088/0964-1726/22/1/015014]
25. Zhang, J., Xu, G., Liu, F., Lian, J. and Yan, X., (2016), Experimental investigation on the flow induced vibration of an equilateral triangle prism in water, Applied Ocean Research,61:92-100. [
DOI:10.1016/j.apor.2016.08.002]
26. Hémon, P., Amandolese, X. and Andrianne, T., (2017), Energy harvesting from galloping of prisms: A wind tunnel experiment, Journal of Fluids and Structures, 70:390-402. [
DOI:10.1016/j.jfluidstructs.2017.02.006]
27. Zeinoddini, M., Tamimi, V. and Bakhtiari, A., (2014), WIV response of tapered circular cylinders in a tandem arrangement: An experimental study, Applied Ocean Research, 47:162-173. [
DOI:10.1016/j.apor.2014.05.001]
28. Zeinoddini, M., Tamimi, V. and Seif, M.S., (2013), Stream-wise and cross-flow vortex induced vibrations of single tapered circular cylinders: an experimental study, Applied Ocean Research, 42:124-35. [
DOI:10.1016/j.apor.2013.05.005]
29. Tamimi, V., Naeeni, S.T.O. and Zeinoddini, M., (2017), Flow induced vibrations of a sharp edge square cylinder in the wake of a circular cylinder, Applied Ocean Research, 66:117-130. [
DOI:10.1016/j.apor.2017.05.011]
30. Assi, G.R.S., (2009), Mechanisms for flow-induced vibration of interfering bluff bodies, PhD thesis, Imperial College London, London, UK.
31. Morse, T.L., Govardhan, R.N. and Williamson, C.H.K., (2008), The effect of end conditions on the vortex-induced vibration of cylinders, Journal of Fluids and Structures, 24:1227-39. [
DOI:10.1016/j.jfluidstructs.2008.06.004]
32. Blevins, R.D. and Coughran, C.H.S., (2009), Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number, Journal of Fluids Engineering, Vol. 131/101202-1. [
DOI:10.1115/1.3222904]
33. Khalak, A. and Williamson, C.H.K., (1999), Motions, forces and mode transitions in vortex- induced vibrations at low mass-damping, Journal of Fluids and Structures,13:813-51. [
DOI:10.1006/jfls.1999.0236]