Write your message


Volume 22, Issue 1 (1-2026)                   ijmt 2026, 22(1): 66-79 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delgarm Z, Mostafa Gharebaghi A R, Emami A. Comparison of Metaheuristic Algorithms for Weight Optimization of a Semi-Submersible VAWT Substructure with Hexagonal Pontoons. ijmt 2026; 22 (1) :66-79
URL: http://ijmt.ir/article-1-910-en.html
1- Sahand Univ. of Tech.
2- Sahand University of Technology
3- Univ. of Hormozgan
Abstract:   (25 Views)
In response to rising global energy demand and the urgent need to reduce greenhouse gas emissions, Offshore Wind Turbines (OWTs) have emerged as promising renewable energy solutions. Among deep-water support structures, semi-submersible platforms offer superior motion stability and design flexibility, but their high structural weight significantly affects construction and installation costs. This study compares five metaheuristic algorithms—Genetic Algorithm (GA), Ant Colony Optimization for Continuous Domains (ACOR), Artificial Bee Colony (ABC), Firefly Algorithm (FA), and Particle Swarm Optimization (PSO)—for weight optimization of a four-column semi-submersible substructure supporting a Vertical Axis Wind Turbine (VAWT) with hexagonal pontoons. The algorithms were first validated with a reference platform optimized using the Generalized Reduced Gradient (GRG) method. They were then applied to minimize the VAWT substructure weight by optimizing pontoon and column geometry, spacing, and draft under hydrostatic stability, motion, airgap, and feasibility constraints. Each algorithm was executed five times, and Kolmogorov–Smirnov tests confirmed normality of optimized weight and Number of Function Evaluations (NFE). Analysis of Variance (ANOVA) indicated statistically significant differences among algorithms, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used for multi-criteria decision-making, considering average weight, NFE, accuracy, variance, and stability. Results indicate that ACOR achieved the highest rank, achieving ~37.6% (3690 tons) weight reduction. The findings demonstrate ACOR’s effectiveness as a decision-support tool for conceptual design of semi-submersible substructure of OWTs. However, it is expected that hydrodynamic loading, aero-structural coupling to be also considered for further detailed design.
Full-Text [PDF 828 kb]   (11 Downloads)    

Highlights:
  1. A novel vertical double‑flap WEC is introduced for wave energy harvesting
  2. Coupled dynamic equations of the double‑flap WEC are derived using Lagrangian mechanics
  3. Wave‑induced hydrodynamic coefficients of the upper and lower flaps are comparatively analyzed
  4. The dynamic response and power production of the vertical double‑flap WEC are investigated
  5. The upper flap is shown to generate higher power due to its larger rotational motion

Type of Study: Research Paper | Subject: Offshore Structure
Received: 2026/01/14 | Accepted: 2026/02/18

References
1. Karimirad, M. (2014). Offshore energy structures: for wind power, wave energy and hybrid marine platforms. Springer. [DOI:10.1007/978-3-319-12175-8]
2. Bilgili, M., & Alphan, H. (2022). Global growth in offshore wind turbine technology. Clean Technologies and Environmental Policy, 24(7), 2215-2227. http://dx.doi.org/10.21203/rs.3.rs-1202466/v1 [DOI:10.21203/rs.3.rs-1202466/v1]
3. Amani, S., Prabhakaran, A., & Bhattacharya, S. (2023, June 12-14). Seismic Performance Assessment of Floating Offshore Wind Turbines supported by Tension Leg Platforms. 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Greece. http://dx.doi.org/10.7712/120123.10398.20788 [DOI:10.7712/120123.10398.20788]
4. Reddy, K. T., Chaitanya, J. S. N., Chandramouli, K., & Kumar, M. C. N. (2021). A Study on Floating Wind Turbine for Offshore Power Generation. Journal for Modern Trends in Science & Technology, 7 (0707078), 236-240. http://dx.doi.org/10.46501/IJMTST0707039
5. Ahn, H., Ha, Y. J., & Kim, K. H. (2023). Load evaluation for tower design of large floating offshore wind turbine system according to wave conditions. Energies, 16(4), 1862. [DOI:10.3390/en16041862]
6. Ojo, A. (2024). Geometric shape parameterization and optimization of floating offshore wind turbine substructure within an MDAO framework. https://doi.org/10.1016/j.oceaneng.2025.121378 [DOI:10.48730/6db0-5693]
7. Park, J. C., & Wang, C. M. (2021). Hydrodynamic behaviour of floating polygonal platforms under wave action. Journal of Marine Science and Engineering, 9(9), 923. [DOI:10.3390/jmse9090923]
8. Ivanov, G., Hsu, I. J., & Ma, K. T. (2023). Design considerations on Semi-Submersible columns, bracings and pontoons for floating wind. Journal of Marine Science and Engineering, 11(9), 1663. [DOI:10.3390/jmse11091663]
9. Wang, J., Ren, Y., Shi, W., Collu, M., Venugopal, V., & Li, X. (2025). Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm. Applied Energy, 377, 124533. [DOI:10.1016/j.apenergy.2024.124533]
10. Drabo, S., Lai, S., Liu, H., & Feng, X. (2024). 10 MW FOWT Semi-Submersible Multi-Objective Optimization: A Comparative Study of PSO, SA, and ACO. Energies, 17(23), 5914. [DOI:10.3390/en17235914]
11. Sahu, S.K., Kumar, V., Dutta, S.C., Sarkar, R., Bhattacharya, S., & Debnath, P. (2024). Structural safety of offshore wind turbines: Present state of knowledge and future challenges. Ocean Engineering, 309, 118383. http://dx.doi.org/10.1016/j.oceaneng.2024.118383 [DOI:10.1016/j.oceaneng.2024.118383]
12. Arora, R. K. (2015). Optimization: algorithms and applications. CRC press. [DOI:10.1201/b18469]
13. Nocedal, J., & Wright, S.J. (1999). Numerical optimization. New York, NY: Springer New York. [DOI:10.1007/b98874]
14. Benaissa, B., Kobayashi, M., Al Ali, M., Khatir, T., & Elmeliani, M.E.A.E. (2024). Metaheuristic optimization algorithms: An overview. HCMCOU Journal of Science-Advances in Computational Structures, 33-61. http://dx.doi.org/10.46223/HCMCOUJS.acs.en.14.1.47.2024 [DOI:10.46223/HCMCOUJS.acs.en.14.1.47.2024]
15. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. http://dx.doi.org/10.1109/ICNN.1995.488968 [DOI:10.1109/ICNN.1995.488968]
16. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278. [DOI:10.1016/j.tcs.2005.05.020]
17. Mathew, T. V. (2012). Genetic algorithm. Report submitted at IIT Bombay, 53, 18-19. http://dx.doi.org/10.22541/au.159164762.28487263 [DOI:10.22541/au.159164762.28487263]
18. Bansal, J. C., Sharma, H., & Jadon, S. S. (2013). Artificial bee colony algorithm: a survey. International Journal of Advanced Intelligence Paradigms, 5(1-2), 123-159. http://dx.doi.org/10.1504/IJAIP.2013.054681 [DOI:10.1504/IJAIP.2013.054681]
19. Fister, I., Fister Jr, I., Yang, X.S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34-46. [DOI:10.1016/j.swevo.2013.06.001]
20. Zukhri, Z., & Paputungan, I.V. (2013). A hybrid optimization algorithm based on genetic algorithm and ant colony optimization. International Journal of Artificial Intelligence & Applications, 4(5), 63-75. http://dx.doi.org/10.5121/ijaia.2013.4505 [DOI:10.5121/ijaia.2013.4505]
21. Paulsen, U.S., Madsen, H.A., Hattel, J.H., Baran, I., & Nielsen, P.H. (2013). Design optimization of a 5 MW floating offshore vertical-axis wind turbine. Energy Procedia, 35, 22-32. http://dx.doi.org/10.1016/j.egypro.2013.07.155 [DOI:10.1016/j.egypro.2013.07.155]
22. Liu, Q., Bashir, M., Huang, H., Miao, W., Xu, Z., Yue, M., & Li, C. (2025). Nature-inspired innovative platform designs for optimized performance of Floating Vertical Axis Wind Turbines. Applied Energy, 380, 125120. [DOI:10.1016/j.apenergy.2024.125120]
23. Karimi, M., Hall, M., Buckham, B., & Crawford, C. (2017). A multi-objective design optimization approach for floating offshore wind turbine support structures. Journal of Ocean Engineering and Marine Energy, 3, 69-87. https://link.springer.com/article/10.1007/s40722-016-0072-4 [DOI:10.1007/s40722-016-0072-4]
24. Reyes-Casimiro, M., Félix-González, I., & Perea, T. (2023). Design optimization for production semi-submersible pontoons based on genetic algorithms and finite element analysis. Ocean Engineering, 268, 113291. http://dx.doi.org/10.1016/j.oceaneng.2022.113291 [DOI:10.1016/j.oceaneng.2022.113291]
25. Otter, A., Murphy, J., Pakrashi, V., Robertson, A., & Desmond, C. (2022). A review of modelling techniques for floating offshore wind turbines. Wind Energy, 25(5), 831-857. [DOI:10.1002/we.2701]
26. Patryniak, K., Collu, M., & Coraddu, A. (2022). Multidisciplinary design analysis and optimisation frameworks for floating offshore wind turbines: State of the art. Ocean Engineering, 251, 111002. [DOI:10.1016/j.oceaneng.2022.111002]
27. Rajeswari, K.S., & Nallayarasu. (2021). Hydrodynamic response of three-and four-column semi-submersibles supporting a wind turbine in regular and random waves. Ships and Offshore Structures, 16(10), 1050-1060. http://dx.doi.org/10.1080/17445302.2020.1806681 [DOI:10.1080/17445302.2020.1806681]
28. Gupta, S.K., Pandey, A.P., Sawla, A., Baredar, P. (2016). A Brief Review on Design and Performance Study of Vertical Axis Wind Turbine Blades. International Research Journal of Engineering and Technology (IRJET), 3(7), 465-471
29. Al-Rawajfeh, M.A. & Gomaa, M.R. (2023). Comparison between horizontal and vertical axis wind turbine. International Journal of Applied Power Engineering (IJAPE), 12(1), 13-23. DOI: 10.11591/ijape.v12.i1.pp13-23 [DOI:10.11591/ijape.v12.i1.pp13-23]
30. Borg, M. & Collu, M. (2014). A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines. Phil. Trans. R. Soc. A 373: 20140076. http://dx.doi.org/10.1098/rsta.2014.0076 [DOI:10.1098/rsta.2014.0076] [PMID]
31. Gallala, J.R. (2013). Hull Dimensions of a Semi-Submersible Rig: A Parametric Optimization Approach. Master's thesis, Institutt for marin teknikk.
32. Patel, M.H. (2013). Dynamics of offshore structures. Butterworth-Heinemann.
33. DNV, G. (2004). DNV-OS-J101-Design of offshore wind turbine structures. DNV GL.
34. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano.
35. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. http://dx.doi.org/10.1109/3477.484436 [DOI:10.1109/3477.484436] [PMID]
36. Dorigo, M., Di Caro, G., & Gambardella, L.M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137-172. http://dx.doi.org/10.1162/106454699568728 [DOI:10.1162/106454699568728] [PMID]
37. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. [DOI:10.1016/j.ejor.2006.06.042]
38. Rehman, S., Khan, S.A., & Alhems, L.M. (2020). Application of TOPSIS approach to multi-criteria selection of wind turbines for on-shore sites. Applied Sciences, 10(21), 7595. [DOI:10.3390/app10217595]
39. Krohling, R.A., & Pacheco, A.G. (2015). A-TOPSIS-an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Computer Science, 55, 308-317. http://dx.doi.org/10.1016/j.procs.2015.07.054 [DOI:10.1016/j.procs.2015.07.054]
40. Facchinetti, S. (2009). A procedure to find exact critical values of Kolmogorov-Smirnov test. Statistica Applicata-Italian Journal of Applied Statistics, 21(3-4), 337-359.
41. Johnson, N.L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 2). John wiley & sons.
42. Abdi, H., & Williams, L.J. (2010). Newman-Keuls test and Tukey test. Encyclopedia of research design, 2, 897-902.
43. Ezzat, A.E., & Hamoud, H.S. (2016). Analytic hierarchy process as module for productivity evaluation and decision-making of the operation theater. Avicenna journal of medicine, 6(01), 3-7. [DOI:10.4103/2231-0770.173579] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
International Journal of Maritime Technology is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.