1. Karimirad, M. (2014). Offshore energy structures: for wind power, wave energy and hybrid marine platforms. Springer. [
DOI:10.1007/978-3-319-12175-8]
2. Bilgili, M., & Alphan, H. (2022). Global growth in offshore wind turbine technology. Clean Technologies and Environmental Policy, 24(7), 2215-2227. http://dx.doi.org/10.21203/rs.3.rs-1202466/v1 [
DOI:10.21203/rs.3.rs-1202466/v1]
3. Amani, S., Prabhakaran, A., & Bhattacharya, S. (2023, June 12-14). Seismic Performance Assessment of Floating Offshore Wind Turbines supported by Tension Leg Platforms. 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Greece. http://dx.doi.org/10.7712/120123.10398.20788 [
DOI:10.7712/120123.10398.20788]
4. Reddy, K. T., Chaitanya, J. S. N., Chandramouli, K., & Kumar, M. C. N. (2021). A Study on Floating Wind Turbine for Offshore Power Generation. Journal for Modern Trends in Science & Technology, 7 (0707078), 236-240. http://dx.doi.org/10.46501/IJMTST0707039
5. Ahn, H., Ha, Y. J., & Kim, K. H. (2023). Load evaluation for tower design of large floating offshore wind turbine system according to wave conditions. Energies, 16(4), 1862. [
DOI:10.3390/en16041862]
6. Ojo, A. (2024). Geometric shape parameterization and optimization of floating offshore wind turbine substructure within an MDAO framework.
https://doi.org/10.1016/j.oceaneng.2025.121378 [
DOI:10.48730/6db0-5693]
7. Park, J. C., & Wang, C. M. (2021). Hydrodynamic behaviour of floating polygonal platforms under wave action. Journal of Marine Science and Engineering, 9(9), 923. [
DOI:10.3390/jmse9090923]
8. Ivanov, G., Hsu, I. J., & Ma, K. T. (2023). Design considerations on Semi-Submersible columns, bracings and pontoons for floating wind. Journal of Marine Science and Engineering, 11(9), 1663. [
DOI:10.3390/jmse11091663]
9. Wang, J., Ren, Y., Shi, W., Collu, M., Venugopal, V., & Li, X. (2025). Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm. Applied Energy, 377, 124533. [
DOI:10.1016/j.apenergy.2024.124533]
10. Drabo, S., Lai, S., Liu, H., & Feng, X. (2024). 10 MW FOWT Semi-Submersible Multi-Objective Optimization: A Comparative Study of PSO, SA, and ACO. Energies, 17(23), 5914. [
DOI:10.3390/en17235914]
11. Sahu, S.K., Kumar, V., Dutta, S.C., Sarkar, R., Bhattacharya, S., & Debnath, P. (2024). Structural safety of offshore wind turbines: Present state of knowledge and future challenges. Ocean Engineering, 309, 118383. http://dx.doi.org/10.1016/j.oceaneng.2024.118383 [
DOI:10.1016/j.oceaneng.2024.118383]
12. Arora, R. K. (2015). Optimization: algorithms and applications. CRC press. [
DOI:10.1201/b18469]
13. Nocedal, J., & Wright, S.J. (1999). Numerical optimization. New York, NY: Springer New York. [
DOI:10.1007/b98874]
14. Benaissa, B., Kobayashi, M., Al Ali, M., Khatir, T., & Elmeliani, M.E.A.E. (2024). Metaheuristic optimization algorithms: An overview. HCMCOU Journal of Science-Advances in Computational Structures, 33-61. http://dx.doi.org/10.46223/HCMCOUJS.acs.en.14.1.47.2024 [
DOI:10.46223/HCMCOUJS.acs.en.14.1.47.2024]
15. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. http://dx.doi.org/10.1109/ICNN.1995.488968 [
DOI:10.1109/ICNN.1995.488968]
16. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278. [
DOI:10.1016/j.tcs.2005.05.020]
17. Mathew, T. V. (2012). Genetic algorithm. Report submitted at IIT Bombay, 53, 18-19. http://dx.doi.org/10.22541/au.159164762.28487263 [
DOI:10.22541/au.159164762.28487263]
18. Bansal, J. C., Sharma, H., & Jadon, S. S. (2013). Artificial bee colony algorithm: a survey. International Journal of Advanced Intelligence Paradigms, 5(1-2), 123-159. http://dx.doi.org/10.1504/IJAIP.2013.054681 [
DOI:10.1504/IJAIP.2013.054681]
19. Fister, I., Fister Jr, I., Yang, X.S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34-46. [
DOI:10.1016/j.swevo.2013.06.001]
20. Zukhri, Z., & Paputungan, I.V. (2013). A hybrid optimization algorithm based on genetic algorithm and ant colony optimization. International Journal of Artificial Intelligence & Applications, 4(5), 63-75. http://dx.doi.org/10.5121/ijaia.2013.4505 [
DOI:10.5121/ijaia.2013.4505]
21. Paulsen, U.S., Madsen, H.A., Hattel, J.H., Baran, I., & Nielsen, P.H. (2013). Design optimization of a 5 MW floating offshore vertical-axis wind turbine. Energy Procedia, 35, 22-32. http://dx.doi.org/10.1016/j.egypro.2013.07.155 [
DOI:10.1016/j.egypro.2013.07.155]
22. Liu, Q., Bashir, M., Huang, H., Miao, W., Xu, Z., Yue, M., & Li, C. (2025). Nature-inspired innovative platform designs for optimized performance of Floating Vertical Axis Wind Turbines. Applied Energy, 380, 125120. [
DOI:10.1016/j.apenergy.2024.125120]
23. Karimi, M., Hall, M., Buckham, B., & Crawford, C. (2017). A multi-objective design optimization approach for floating offshore wind turbine support structures. Journal of Ocean Engineering and Marine Energy, 3, 69-87. https://link.springer.com/article/10.1007/s40722-016-0072-4 [
DOI:10.1007/s40722-016-0072-4]
24. Reyes-Casimiro, M., Félix-González, I., & Perea, T. (2023). Design optimization for production semi-submersible pontoons based on genetic algorithms and finite element analysis. Ocean Engineering, 268, 113291. http://dx.doi.org/10.1016/j.oceaneng.2022.113291 [
DOI:10.1016/j.oceaneng.2022.113291]
25. Otter, A., Murphy, J., Pakrashi, V., Robertson, A., & Desmond, C. (2022). A review of modelling techniques for floating offshore wind turbines. Wind Energy, 25(5), 831-857. [
DOI:10.1002/we.2701]
26. Patryniak, K., Collu, M., & Coraddu, A. (2022). Multidisciplinary design analysis and optimisation frameworks for floating offshore wind turbines: State of the art. Ocean Engineering, 251, 111002. [
DOI:10.1016/j.oceaneng.2022.111002]
27. Rajeswari, K.S., & Nallayarasu. (2021). Hydrodynamic response of three-and four-column semi-submersibles supporting a wind turbine in regular and random waves. Ships and Offshore Structures, 16(10), 1050-1060. http://dx.doi.org/10.1080/17445302.2020.1806681 [
DOI:10.1080/17445302.2020.1806681]
28. Gupta, S.K., Pandey, A.P., Sawla, A., Baredar, P. (2016). A Brief Review on Design and Performance Study of Vertical Axis Wind Turbine Blades. International Research Journal of Engineering and Technology (IRJET), 3(7), 465-471
29. Al-Rawajfeh, M.A. & Gomaa, M.R. (2023). Comparison between horizontal and vertical axis wind turbine. International Journal of Applied Power Engineering (IJAPE), 12(1), 13-23. DOI: 10.11591/ijape.v12.i1.pp13-23 [
DOI:10.11591/ijape.v12.i1.pp13-23]
30. Borg, M. & Collu, M. (2014). A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines. Phil. Trans. R. Soc. A 373: 20140076. http://dx.doi.org/10.1098/rsta.2014.0076 [
DOI:10.1098/rsta.2014.0076] [
PMID]
31. Gallala, J.R. (2013). Hull Dimensions of a Semi-Submersible Rig: A Parametric Optimization Approach. Master's thesis, Institutt for marin teknikk.
32. Patel, M.H. (2013). Dynamics of offshore structures. Butterworth-Heinemann.
33. DNV, G. (2004). DNV-OS-J101-Design of offshore wind turbine structures. DNV GL.
34. Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano.
35. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. http://dx.doi.org/10.1109/3477.484436 [
DOI:10.1109/3477.484436] [
PMID]
36. Dorigo, M., Di Caro, G., & Gambardella, L.M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137-172. http://dx.doi.org/10.1162/106454699568728 [
DOI:10.1162/106454699568728] [
PMID]
37. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. [
DOI:10.1016/j.ejor.2006.06.042]
38. Rehman, S., Khan, S.A., & Alhems, L.M. (2020). Application of TOPSIS approach to multi-criteria selection of wind turbines for on-shore sites. Applied Sciences, 10(21), 7595. [
DOI:10.3390/app10217595]
39. Krohling, R.A., & Pacheco, A.G. (2015). A-TOPSIS-an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Computer Science, 55, 308-317. http://dx.doi.org/10.1016/j.procs.2015.07.054 [
DOI:10.1016/j.procs.2015.07.054]
40. Facchinetti, S. (2009). A procedure to find exact critical values of Kolmogorov-Smirnov test. Statistica Applicata-Italian Journal of Applied Statistics, 21(3-4), 337-359.
41. Johnson, N.L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 2). John wiley & sons.
42. Abdi, H., & Williams, L.J. (2010). Newman-Keuls test and Tukey test. Encyclopedia of research design, 2, 897-902.
43. Ezzat, A.E., & Hamoud, H.S. (2016). Analytic hierarchy process as module for productivity evaluation and decision-making of the operation theater. Avicenna journal of medicine, 6(01), 3-7. [
DOI:10.4103/2231-0770.173579] [
PMID] [
]